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Methodology is presented to derive reduced-order models for large-scale parametric
applications in unsteady aerodynamics. The specific case considered in this paper is a
computational fluid dynamic (CFD) model with parametric dependence that arises from
geometric shape variations. The first key contribution of the methodology is the derivation
of a linearized model that permits the effects of geometry variations to be represented with
an explicit affine function. The second key contribution is an adaptive sampling method
that utilizes an optimization formulation to derive a reduced basis that spans the space of
geometric input parameters. The method is applied to derive efficient reduced-order models
for probabilistic analysis of the effects of blade geometry variation for a two-dimensional
model problem governed by the Euler equations. Reduced-order models that achieve three
orders of magnitude reduction in the number of states are shown to accurately reproduce
CFD Monte Carlo simulation results at a fraction of the computational cost.

I. Introduction

Model reduction is a powerful tool that permits the systematic generation of cost-efficient representations
of large-scale systems that, for example, result from discretization of partial differential equations (PDEs).
We present an approach for deriving reduced models for probabilistic analysis in large-scale unsteady aero-
dynamic applications. The key challenges that must be addressed in this setting are the formulation of a
computationally efficient representation of the parametric dependence that describes the uncertainty, and
the derivation of reduced-order models that capture variation over a parametric input space.

Recent years have seen the widespread use of computational fluid dynamics (CFD) to solve problems
arising in applications of interest in unsteady aerodynamics. In many cases, CFD formulations lead to large-
scale systems of equations that are computationally expensive to solve. In many unsteady aerodynamic
applications, a small number of inputs and outputs of interest can be identified, and computationally effi-
cient reduced-order models can be obtained that preserve the desired input-output mapping. For example,
the proper orthogonal decomposition (POD) method of snapshots1 has been used widely throughout CFD
applications such as aeroelasticity2–4 and flow control.5,6

Quantifying the impact of variations in input parameters on system outputs of interest is critical to a
number of applications, such as shape design and probabilistic analyses. For example, mistuning, or blade-
to-blade variation, is an important consideration for aeroelastic analysis of bladed disks, since even small
variations among blades can have a large impact on the forced response and consequently the high-cycle
fatigue properties of the engine. In such applications—where the physical system must be simulated repeat-
edly for different inputs—the availability of reduced models can greatly facilitate the design and/or analysis
task. However, to be useful in such a setting, the reduced model must provide an accurate representation of
the high-fidelity CFD model over a wide range of parameters.

Most reduction techniques for large-scale systems employ a projection framework that utilizes a reduced-
space basis. Methods to compute the basis in the large-scale setting include approximate balanced trunca-
tion,7–10 Krylov-subspace methods,11–13 and POD.1,14,15 In the latter two cases, the quality of the reduced-
order model is critically dependent on the information, generated from sampled solutions of the large-scale

∗Research Assistant, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA
02139 (tanbui@mit.edu)

†Associate Professor, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA
02139 (kwillcox@mit.edu), AIAA Senior Member

‡Professor, Geological Sciences, Mechanical Engineering, Institute for Computational Engineering and Sciences, University
of Texas at Austin, Austin, TX, 78712 (omar@ices.texas.edu)

1 of 15

American Institute of Aeronautics and Astronautics



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
Parametric Reduced-Order Models for Probabilistic Analysis of
Unsteady Aerodynamic Applications 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Massachusetts Institute of Technology,Department of Aeronautics and 
Astronautics,Cambridge,MA,02139 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

15 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



system, that is used to create the reduced basis. In general, selecting an appropriate set of samples to
generate this information has been via an ad-hoc process. Empirical knowledge of the problem at hand has
been used to sample a parameter space to generate a POD or Krylov basis for cases where the number of
input parameters is small, for example optimal control applications5,6, 16,17 and parameterized design of in-
terconnect circuits,18 and in the case of multiple parameters describing inhomogeneous boundary conditions
for parabolic PDEs.19

For reduction of large-scale linear time-invariant systems using multipoint rational Krylov approxima-
tions, Ref. 20 proposes a systematic method for selecting interpolation points based on a rigorous optimality
criterion. To address the more general challenge of sampling a high-dimensional parameter space to build a
reduced basis, the greedy algorithm was introduced in Refs. 21–24. The key premise of the greedy algorithm
is to adaptively choose samples by finding the location of maximum reduced model error estimate, over a
pre-determined discrete set of parameters. The greedy algorithm was applied to find reduced models for
the parameterized steady incompressible Navier-Stokes equations.22 It was also combined with a posteri-
ori error estimators for parameterized parabolic PDEs, and applied to several optimal control and inverse
problems.23,24

Here, we formulate the task of determining appropriate sample locations as a greedy optimization prob-
lem, which is solved using an efficient adaptive algorithm. The optimization formulation treats the parameter
space as continuous; that is, we do not require the a priori selection of a discrete parameter set. Further, our
selection criteria uses the true computed error between full-order and reduced-order outputs; thus, our ap-
proach is applicable in cases for which error estimators are unavailable. Unlike other sampling methods, the
optimization-based approach scales well to systems with a large number of parameters. To further address
the challenge of achieving a computationally efficient representation of the dependence of the CFD model
on geometric parameters, we propose a linearization strategy that yields an affine parametric dependence.

This article is organized as follows. Section II describes the discontinuous Galerkin (DG) CFD model used
in this work and formulates a linearized model for capturing the effects of geometry variations on unsteady
aerodynamic response. Section III presents an overview of projection-based model reduction and then
describes the proposed optimization-based approach to determine the reduced basis. Section IV demonstrates
the methodology through an example that considers the effects of variations in blade geometry on the forced
response of a subsonic compressor blade row. Finally, Section V presents conclusions.

II. Linearized CFD Model with Geometric Variability

In this section, we present an overview of the DG CFD model that is used in this work. We then derive
a linearized unsteady model that incorporates geometric variability in a computationally efficient way.

A. CFD model

Recent developments in the field of CFD have led to the use of higher-order finite element discretizations for
flow modeling. These schemes have advantages over traditional finite-volume methods by introducing higher-
order accuracy compactly within grid elements and thus providing a significant decrease in the computational
cost to obtain reliably accurate solutions. A DG formulation is used in this work. A linearized unsteady
flow solver was developed and implemented as part of a larger CFD development effort that includes an
adaptive meshing utility, a multigrid solution algorithm, gradient-based optimization capability, and high-
order visualization.25 Here, we briefly review the DG discretization and solution method for the two-
dimensional Euler equations, which are described in more detail in Ref. 26 and 27.

1. Nonlinear CFD model

For two-dimensional flows, the Euler equations are given by

∂w
∂t

+∇ · F(w) = 0, (1)

where w = [ρ, ρu, ρv, ρE]T is the conservative state vector, and F = (Fx,Fy) is the inviscid Euler flux,
where Fx =

[
ρu, ρu2 + P, ρuv, ρuH

]T and Fy =
[
ρv, ρuv, ρv2 + P, ρvH

]T . Here, ρ is the density, u and
v are respectively the x− and y−component of velocity, E is the energy, P is the pressure, and H = E+P/ρ
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is the total enthalpy. The equation of state is

P = (γ − 1)
[
ρE − 1

2
ρ

(
u2 + v2

)]
, (2)

where γ is the ratio of specific heats.
As in the continuous finite element method, the first step in the DG method is to discretize the domain

under consideration, Ω, into elements Ωe. Next, a space of polynomials of degree at most p, Up
h(Ωe), is

defined on each element, where h denotes a representative element size for the discretization (e.g. the size
of the smallest element). On each element Ωe, the approximate solution wh can be found by enforcing the
nonlinear conservation law (1) locally, for all test functions vh ∈ Up

h(Ωe):
∫

Ωe

vT
h

∂wh

∂t
dΩe −

∫

∂Ωe

∇vT
h · F(wh)dΩe +

∫

∂Ωe\∂Ω

(
v+

h

)T H(w+
h ,w

−
h , n̂)ds

+
∫

∂Ωe∩∂Ω

(
v+

h

)T Hbd(w+
h ,w

−
h , n̂)ds = 0, (3)

where ∂Ω and ∂Ωe are the boundaries of the entire domain Ω and the element Ωe, respectively, and n̂
denotes the outward-pointing normal on the boundaries of the element. The terms H(w+

h ,w
−
h , n̂) and

Hbd(w+
h ,w

−
h , n̂) are numerical flux functions for interior and boundary edges, respectively, where ()+ and

()− denote values taken from the interior and exterior of the element. The interior flux function is computed
using the Roe-averaged flux function28 and contributes over element boundaries that do not belong to the
domain boundary, denoted by ∂Ωe\∂Ω. The fluxes on the common boundaries of ∂Ωe and ∂Ω, denoted by
∂Ωe ∩ ∂Ω, are computed using the inner state and boundary condition data.

The final form of the DG discretization is constructed by selecting a basis for Up
h(Ωe). The approximate

solution wh on each element is assumed to be a linear combination of the finite element basis functions ψj ,

wh(t, x, y) =
nb∑

j=1

w̄j(t)ψj(x, y), (4)

where w̄j(t) gives the modal content of ψj on element Ωe, and nb is the number of basis functions required
to describe Up

h(Ωe) (e.g. nb = 1 for p = 0 and nb = 3 for p = 1). The complete set of unknown quantities
for the DG formulation thus comprises the values of w̄j(t), j = 1, . . . , nb for every element in the spatial
domain. These quantities are contained in the vector w̄(t) ∈ IRn, where n is the total number of unknowns,
which depends both on the number of elements in the discretization and on the polynomial order p.

This spatial discretization together with the application of appropriate boundary conditions leads us to
the following set of nonlinear ordinary differential equations (see Ref. 25 and 27 for more detail),

E
dw̄
dt

+ R(w̄,u) = 0, (5)

where E ∈ IRn×n is the mass matrix, and R is the residual vector representing the final three terms of (3)
plus the effects of boundary conditions. The vector u(t) ∈ IRm contains m external forcing inputs that are
applied through boundary conditions, such as prescribed motion of the domain boundary or incoming flow
disturbances.

For steady-state flows, pseudo time-stepping is used to improve the initial transient behavior of the
solver and the nonlinear system (5) is solved using a p-multigrid scheme with a line Jacobi smoother.25,27

For unsteady computations, a second-order backward Euler temporal discretization is applied to (5). The
resulting nonlinear equations are solved using a Newton solver. The motion of grid points on the domain
boundary is prescribed according to the corresponding external input (e.g. prescribed motion of a blade).
The resulting motion of internal grid points is computed using a Jacobi smoothing formulation.

For many practical applications, we are concerned with the prediction of a set of l output quantities of
interest. We define these output quantities of interest to be contained in the vector y ∈ IRl and defined by
the nonlinear function Y,

y(t) = Y(w̄(t)). (6)
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2. Linearized CFD model

In many cases of interest, the unsteady flow solution can be assumed to be a small perturbation from steady-
state conditions. This allows the unsteady governing equations to be linearized around the steady-state flow,
which reduces the computational cost of solution considerably. The linearization of equations (5, 6) can be
written in standard state-space form

Eẋ = Ax + Bu, (7)
y = Cx, (8)

where x ∈ IRn is the state vector containing the n perturbations in flow unknowns from the steady-state
solution w̄ss, that is w̄(t) = w̄ss + x(t). The matrices A ∈ IRn×n, B ∈ IRn×p, and C ∈ IRq×n in (7) and (8)
have constant coefficients evaluated at steady-state conditions and arise from the linearization of (5) and (6)
as follows,

A =
∂R
∂w̄

∣∣∣∣
w̄ss

, B =
∂R
∂u

∣∣∣∣
w̄ss

, C =
∂Y
∂w̄

∣∣∣∣
w̄ss

. (9)

B. Linearized unsteady model with geometric variability

We next consider incorporating the effects of geometry variability into the linearized unsteady CFD model.
Following Ref. 29, a general geometry, g, can be expressed as

g = gn + ḡ +
ns∑

i=1

σizivi, (10)

where gn is the nominal geometry, ḡ is the average geometric variation, vi are geometric mode shapes, and
ns is the number of mode shapes used to represent the variation in geometry. The geometric mode shapes
could be computed, for example, by performing the principal component analysis (PCA) on a manufacturing
sample of system geometries. In that case, the parameters zi in (10) are random numbers normally distributed
with zero mean and unity variance, zi ∈ N(0, 1), and σi is the standard deviation of the geometric data
attributable to the ith mode; thus the product σizi is the amount by which the mode vi contributes to the
geometry g. A detailed description of the methodology underlying this geometric model can be found in
Ref. 29.

Using the model (10), a general geometry g(z) is specified by the parameter vector z = [z1, z2, . . . , zns ]
T ,

which describes the geometry variability in terms of the geometry modes. The linearized CFD system
corresponding to geometry g(z) is given by

E(w̄ss(g(z)), g(z))ẋ = A(w̄ss(g(z)), g(z))x + B(w̄ss(g(z)), g(z))u, (11)
y = C(w̄ss(g(z)), g(z))x, (12)

where the CFD system matrices E,A,B and C are in general both a nonlinear function of the geometry,
g(z), and of the steady-state solution, w̄ss(g(z)), which is itself also a function of the geometry. To solve the
CFD system (11), (12), for each geometry g we must firstly compute the steady-state solution, w̄ss(g(z)),
secondly evaluate the linearized matrices E,A,B and C, and thirdly solve the resulting large-scale linear
system. This is a computationally prohibitive proposition for applications such as probabilistic analysis,
where thousands of geometry perturbations may be analyzed over many random samples z.

For convenience of notation, we write the dependence of the CFD matrices on the parameter z as
E(w̄ss(g(z)), g(z)) = E(z), A(w̄ss(g(z)), g(z)) = A(z), B(w̄ss(g(z)), g(z)) = B(z), and C(w̄ss(g(z)), g(z)) =
C(z). We use the expansion given by equation (10), which represents a general geometry as a perturbation
about the average geometry g0 = gn + ḡ, to derive an approximate model for representing the effects of
geometry variations. Instead of computing the linearized CFD matrices exactly for any random variability
z, we choose to linearize the relationships E(z), A(z), B(z), and C(z). We define the linearized unsteady
CFD model for the average geometry g0 = gn + ḡ by the matrices E0, A0, B0, and C0, with corresponding
solution x0. That is, for z = 0 we have

E0ẋ0 = A0x0 + B0u, (13)
y0 = C0x0. (14)
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Using a Taylor series expansion about z = 0 for the matrix A(z) gives

A(z) = A0 +
∂A
∂z1

∣∣∣∣
z=0

z1 + . . .+
∂A
∂zns

∣∣∣∣
z=0

zns + . . . , (15)

where the matrix partial derivatives denote componentwise derivatives, which can be evaluated through
application of the chain rule. These derivatives are evaluated at average geometry conditions, z = 0. The
matrices E(z),B(z) and C(z) can be expanded using formulae analogous to (15).

If the geometric variability (given by the product σizi) is sufficiently small, the constant and linear terms
in the Taylor expansion (15) are sufficient to approximate the linearized matrices A(z) accurately, that is,

A(z) ≈ A0 +
∂A
∂z1

∣∣∣∣
z=0

z1 + . . .+
∂A
∂zns

∣∣∣∣
z=0

zns . (16)

For i = 1, 2, . . . , ns, we define

Ēi =
∂E
∂zi

∣∣∣∣
z=0

, Āi =
∂A
∂zi

∣∣∣∣
z=0

, B̄i =
∂B
∂zi

∣∣∣∣
z=0

, C̄i =
∂C
∂zi

∣∣∣∣
z=0

, (17)

where the matrices Ēi, Āi, B̄i, and C̄i can be computed, for example, using a finite difference approximation
of the respective derivatives. The approximate linearized CFD model for any geometric variability z is then
given by

(
E0 +

ns∑

i=1

Ēizi

)

︸ ︷︷ ︸
E(z)

ẋ =

(
A0 +

ns∑

i=1

Āizi

)

︸ ︷︷ ︸
A(z)

x +

(
B0 +

ns∑

i=1

B̄izi

)

︸ ︷︷ ︸
B(z)

u, (18)

y =

(
C0 +

ns∑

i=1

C̄izi

)

︸ ︷︷ ︸
C(z)

x. (19)

It should be noted here that a number of large-scale steady-state CFD solves are required in order to
determine the matrices A0, B0, C0, E0, Āi, B̄i, C̄i and Ēi. For example, if central difference approximations
to the matrix derivatives are used, a total of 2

∑ns

i=1 +1 large-scale steady-state CFD solves is required. This
is a one-time offline cost; once the matrices are computed, the approximate linearized system (18), (19) can
be readily evaluated for an arbitrary geometry g(z) without running the CFD steady solver.

It should also be noted that the model (18), (19) is valid only for small variations from the average
geometry. Larger variations will incur larger errors, due to the neglect of the higher-order terms in the
Taylor series expansion. Even with this restriction, the model is useful for many applications where small
geometric variations are of interest; however, the approximate linearized model is still of high dimension, and
thus is computationally too expensive for applications such as probabilistic analysis in which one needs to
determine the unsteady aerodynamic response for many random geometries. In the next section we propose
a model reduction method that enables us to further reduce the cost of solving the approximate linearized
system. The key challenge that must be addressed is developing a reduced-order model that is accurate over
both time and the geometric parameter space, described here by the vector z.

III. Model Reduction Methodology

A. General projection framework

Most large-scale model reduction frameworks are based on a projection approach, which can be described in
general terms as follows. Although the projection framework is described here for a general system that is
linear in the state variables, it can also be applied to nonlinear systems. Consider the general parameterized
dynamical system

E(z)ẋ = A(z)x + B(z)u, (20)
y = C(z)x, (21)
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with initial condition
x(0) = x0, (22)

where x(z, t) ∈ IRn is the state vector, u(t) ∈ IRm contains the m forcing inputs to the system, y(z,x, t) ∈
IRl, contains the l outputs of interest, and x0 is the specified initial state. The matrices E ∈ IRn×n,
A ∈ IRn×n, B ∈ IRn×m, and C ∈ IRl×n in (20) and (21) may depend (possibly nonlinearly) on a set of ns

parameters contained in the vector z ∈ IRns . General dynamical systems of the form (20)–(22) often arise
from discretization of PDEs. In that case, the dimension of the system, n, is large, and the parameters zi

could describe, for example, changes in the domain shape, boundary conditions, or PDE coefficients. The
CFD model (18), (19) derived in the previous section is one example of a system of the form (20), (21); in
that case the parameters zi describe geometric shape variations.

A reduced-order model of (20)–(22) can be derived by assuming that the state x(z, t) is represented as a
linear combination of nr basis vectors,

x̃ = Φxr, (23)

where x̃(z, t) is the reduced model approximation of the state x(z, t) and nr ¿ n. The projection matrix
Φ ∈ IRn×nr contains as columns the basis vectors φi, i.e., Φ = [φ1 φ2 · · · φnr ], and the vector xr(z, t) ∈ IRnr

contains the corresponding modal amplitudes. Using the representation (23) together with a Petrov-Galerkin
projection of the system (20)–(22) onto the space spanned by the left basis Ψ ∈ IRn×nr yields the reduced-
order model with state xr(z, t) and output yr(z,x, t),

Er(z)ẋr = Ar(z)xr + Br(z)u, (24)
yr = Cr(z)xr, (25)
x0

r = ΨT x(0), (26)

where Er(z) = ΨT E(z)Φ, Ar(z) = ΨT A(z)Φ, Br(z) = ΨT B(z), and Cr(z) = C(z)Φ.
Projection-based model reduction techniques seek to find the bases Φ and Ψ such that the reduced

system (24)–(26) provides an accurate representation of the large-scale system (20)–(22) over the desired
range of inputs u(t) and parameters z. Here, we consider Galerkin projections, that is Φ = Ψ, although our
methodology holds in the general case.

B. Reduced basis for parametric input dependence

Using the general projection framework, our model reduction task becomes one of determining an appropriate
reduced basis that spans both the parametric input space z and the space of unsteady inputs u(t). In the case
of a linear time-invariant system, that is, a system of the form (20)–(22) with no dependence on parameters
z, a number of model reduction techniques can be used, such as Krylov-based methods and POD. To extend
these techniques to the general case where the system matrices depend on the parameters z, we require a
systematic method of sampling the parametric input space.

In the case of the POD, the reduced basis is formed as the span of a set instantaneous state solutions,
commonly referred to as snapshots. These snapshots are computed by solving the system (20)–(22) for
selected values of the parameters z and selected forcing inputs u(t). The quality of the resulting reduced-
order model is very dependent on the choice of parameters and inputs over which snapshots are computed.
Two issues arise in selecting an appropriate sample set. First, choosing where and how many samples to
generate is, in general, an ad-hoc process. One can use knowledge of the application at hand to determine
representative inputs; however, there exist no guarantees on the quality of the resulting reduced-order model.
Second, in the case that the parametric input space is of high dimension, the number of high-fidelity system
solves required to generate the snapshots in an ad-hoc manner can become prohibitively large. Using standard
sampling methods, a problem with just a few parameters can require a large number of samples to adequately
cover the space, due to the combinatorial explosion of the number of possible parameter combinations.

Here, we use the greedy algorithm21–24 to adaptively select snapshots, by finding the location in parameter
space where the error between the full-order and reduced-order models is maximal, updating the basis with
information gathered from this sample location, forming a new reduced model, and repeating the process.
We formulate the greedy approach as an optimization problem that targets the error in reduced model output
prediction, which is defined by introducing as constraints the systems of equations representing the full and
reduced models. The optimization formulation treats the parameter space as continuous; that is, we do not
require the a priori selection of a discrete parameter set. Further, since the optimization problem uses the
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true computed error between full and reduced outputs, our approach is applicable in cases for which error
estimators are unavailable.

On each cycle of the greedy algorithm, the key step is to determine the location in parameter space where
the error in the reduced model is maximal. We define the cost functional

G(z,x,xr) =
1
2

∫ tf

0

‖y(z,x, t)− yr(z,xr, t)‖22 dt =
1
2

∫ tf

0

‖Cx−Crxr‖22 dt, (27)

which describes the error between the full and reduced models over the parameter space z, integrated over
some time horizon of interest tf . Given a current basis Φ, we find the location in parameter space of
maximum error by solving the optimization problem

max
x,xr,z

G =
1
2

∫ tf

0

‖Cx−Crxr‖22 dt (28)

subject to

E(z)ẋ = A(z)x + B(z)u, (29)
x0 = x(0), (30)

Er(z)ẋr = Ar(z)xr + Br(z)u, (31)
x0

r = ΦTx(0), (32)
zmin ≤ z ≤ zmax, (33)

where zmin and zmax are respectively lower and upper bounds on the parameter vector z. We denote the
parameter vector that solves the maximization problem (28)–(33) by z∗. Next, we compute the solution
x(z∗, t) of the full system at the worst-case parameter value z∗. This solution information is added to the
basis Φ, for example using the POD. (Note that once the sample location has been found, other model
reduction methods could also be employed.) The procedure is then repeated by solving the optimization
problem (28)–(33) with the updated basis Φ. Thus, we are using a systematic, adaptive error metric based
on the ability of the reduced-order model to capture the outputs of interest in order to choose the snapshot
locations. This model reduction approach is summarized in the following algorithm.

Algorithm 1 Adaptive Sampling Procedure

1. Given a reduced basis Φ, solve the optimization problem (28)–(33) to find the location in parameter
space at which the error is maximized, i.e. find z∗ = arg maxG(z).

2. If G(z∗) < ε, where ε is the desired level of accuracy, then terminate the algorithm. If not, go to the
next step.

3. With z = z∗, solve the full system (20)–(22) to compute the state solutions x(z∗, t), t = (0, tf ). Use
the span of these state solutions to update the basis Φ. Go to step 1.

In Step 3 of Algorithm 1, the basis can be updated using many of the existing model reduction methods.
For example, the POD could be used to compute the span of the updated snapshot set, which would comprise
the existing basis vectors and the new state solutions x(z∗, t). As an alternative approach, one could also
solve an (inner) optimization problem to find the basis that minimizes the output error at the sample points.30

Algorithm 1 is initialized by choosing the initial basis as the empty set, Φ = ∅; thus the reduced model is
initially a zero-order approximation of the full model.

The optimization problem (28)–(33) that must be solved in each adaptive cycle (i.e. Step 1 of Algorithm 1)
is large scale; in particular, note that the large-scale system equations appear as constraints in (29). The
determination of each sample point z∗ via solution of this optimization problem therefore requires some
number of solves of the system (29), which for the large-scale problems of interest here (n > 105) is the
dominant computational cost. It is therefore critical to use an efficient optimization method; that is, one
that exploits the structure of the problem to offer rapid convergence. We employ recent advances in scalable
algorithms for large-scale optimization of systems governed by PDEs, which have permitted solution of
problems with millions of state and optimization variables.31,32
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In order to solve the constrained optimization problem (28)–(33), we choose to solve an equivalent bound-
constrained optimization problem in the z variables by eliminating the state variables x and xr. That is, we
replace minx,xr,z G(x,xr, z) with minz G(x(z),xr(z), z), where the dependence of x and xr on z is implicit
through the full and reduced state equations (29)–(32). To deal with the bound constraints, we use the
Coleman-Li approach (see, for example Ref. 33). This enables us to use the subspace trust-region interior-
reflective Newton framework, proposed in Ref. 33, to solve the resulting bound-constrained optimization
problem efficiently. That is, we use the conjugate gradient (CG) method to determine the subspace over
which the linear system of equations arising at each Newton step is solved, and globalize by a trust region
scheme (see, for example, Ref. 34). This method combines the rapid locally-quadratic convergence rate
properties of Newton’s method, the effectiveness of trust region globalization for treating ill-conditioned
problems, and the Eisenstat-Walker idea of preventing oversolving.35

The gradient of G with respect to z, as required by Newton’s method, can be computed efficiently by
an adjoint method. The Hessian-vector product as required by CG is computed on-the-fly; because it is a
directional derivative of the gradient its computation similarly involves solution of state-like and adjoint-like
equations. Therefore, the optimization algorithm requires solution of a pair of state and adjoint systems at
each CG iteration.

Since the system dependence on the parameter z is nonlinear, in the general case the optimization problem
(28)–(33) is non-convex. In particular, as the greedy algorithm progresses we expect the cost functional to
become increasingly multi-modal, since the error function will be close to zero (below the tolerance ε) at
each of the previous parameter sample locations. It should be noted that, while finding the global maximum
is obviously preferred, convergence to a local maximum is not necessarily an adverse result. Solving the
greedy optimization problem is a heuristic to systematically find “good” sample points; at a local maximum
the error is (locally) large. To avoid convergence to a local maximum close to a previous sample location,
and thus explore the parameter space more widely, a random initialization of the optimization variables z
is used for each cycle of Algorithm 1. An initial guess is accepted only if it is sufficiently far from previous
sample locations, measured using a tolerance that is set relative to the parameter ranges. The stopping
criterion applied in Step 2 of Algorithm 1 monitors G(z∗), the reduced model error associated with the
optimal solution z∗. It is important to note that if G(z∗) falls below the desired error level, this guarantees
only that the local error between full and reduced model is sufficiently small. Due to the non-convexity of
the optimization problem, it is possible that larger errors may exist elsewhere in the parameter space.

C. Reduced-order linearized aerodynamic model with geometric variability

Combining the linearized unsteady model with geometric variability from Section II together with the reduced
basis model reduction methodology based on adaptive sampling, we now have a method to create efficient
reduced-order models that capture the effects of small geometric variations.

Using the projection framework, and a basis Φ computed using Algorithm 1, the reduced-order model of
(18), (19) is

(
Er0 +

ns∑

i=1

Ērizi

)

︸ ︷︷ ︸
Er(z)

ẋr =

(
Ar0 +

ns∑

i=1

Ārizi

)

︸ ︷︷ ︸
Ar(z)

xr +

(
Br0 +

ns∑

i=1

B̄rizi

)

︸ ︷︷ ︸
Br(z)

u, (34)

yr =

(
Cr0 +

ns∑

i=1

C̄rizi

)

︸ ︷︷ ︸
Cr(z)

xr, (35)

where the reduced-order matrices are given by

Er0 = ΦT E0Φ, Ar0 = ΦT A0Φ, Br0 = ΦT B0, Cr0 = C0Φ, (36)
Ēri = ΦT ĒiΦ, Āri = ΦT ĀiΦ, B̄ri = ΦT B̄i, C̄ri = C̄iΦ, i = 1, 2, . . . , ns. (37)

The key enabling feature of the adaptive sampling approach is that it allows the basis Φ to be computed in
an efficient systematic manner, even when the dimension of the parameter space is large. The methodology
also gives us a means to monitor the (local) error between reduced-order and full-order outputs. The key
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advantage of the linearized variability model is that it leads to an affine parameter dependence; thus the
reduced-order matrices in (36) and (37) can be evaluated offline, and the online cost of solving the reduced-
order model (34), (35) does not depend on the large-scale state dimension n.

IV. Probabilistic Analysis Application

The model reduction methodology is applied to probabilistic analysis of a subsonic rotor blade that
moves in unsteady rigid motion. The analysis seeks to quantify the effects on the blade forced response of
small variations in blade geometry. Mistuning, or blade-to-blade variation, is an important consideration
for aeroelastic analysis of bladed disks, since even small variations among blades can have a large impact on
the forced response and consequently the high-cycle fatigue properties of the engine. The effects of blade
structural mistuning (variations in mass and stiffness properties) have been extensively studied, see for
example Refs. 36–39; however, due to the prohibitively high computational cost of performing probabilistic
analysis with a CFD model, the aerodynamic effects due to variations in geometry are less understood.

Geometric mistuning effects have been incorporated into structural responses of bladed disks using a
mode-acceleration method to convert the effect of geometric mistuning to that of external forces of the
tuned disks.40 Truncated sets of tuned system modes compensated by static modes—generated by external
forces that were constructed from mistuning—were then used to obtain efficient and accurate structural
reduced models. Several studies have also found that found that a small number of PCA geometric modes
can capture manufactured variability in bladed disks accurately.29,41,42 Such reduced geometric variability
models have been used to investigate the impact of geometric variability on axial compressor steady aero-
dynamic performance using Monte Carlo simulation (MCS) based on a large-scale nonlinear CFD model.29

Using MCS of a CFD model to quantify the impact of geometric variability on unsteady performance is a
computationally prohibitive proposition. For example, if the unsteady analysis for one geometry takes one
minute to compute (a conservative estimate), the O(50, 000) such analyses that would be required for a
MCS would take roughly one month of CPU time. Therefore, we desire to obtain a reduced-order model
that captures both unsteady response and variation over blade geometries. Our method combines the re-
duced geometric variability model and the adaptive model reduction methodology of Algorithm 1 to obtain
a reduced-order model that is valid over a range of forcing frequencies, aerodynamic damping, and small
perturbations in blade geometries, and thus enables fast and accurate probabilistic analysis.

A. Blade forced response example

For the example presented here, the flow is modeled using the two-dimensional Euler equations written at the
blade mid-section. The average geometry of the blade is shown in Figure 1 along with the unstructured grid
for a single blade passage, which contains 4292 triangular elements. The Euler equations are discretized in
space with the DG method described in Section II. For the case considered here, the incoming steady-state
flow has a Mach number of M = 0.113 and a flow angle of β = 59◦. Flow tangency boundary conditions
are applied on the blade surfaces. To compute the steady-state flow for the nominal case, we exploit the
fact that the rotor is cyclically symmetric; thus, the steady flow in each blade passage is the same and the
steady-state solution can be computed on a computational domain that describes just a single blade passage.
Periodic boundary conditions are applied on the upper and lower boundaries of the grid to represent the
effects of neighboring blade passages.

A linearized model is derived for unsteady flow computations by assuming that the unsteady flow is
a small deviation from steady state as described in Section IIA. An affine dependence of the linearized
system matrices on the blade geometries is derived using the method described in Section IIB. This leads
to a system of the form (18), (19), where the state vector, x(t), contains the unknown perturbation flow
quantities (density, Cartesian momentum components and energy). For the DG formulation, the states are
the coefficients corresponding to each nodal finite element shape function. Using linear elements, there are
12 degrees of freedom per element, giving a total state-space size of n = 51, 504 states per blade passage. For
the problem considered here, the forcing input, u(t), describes the unsteady motion of each blade, which in
this case is assumed to be rigid plunging motion (vertical motion with no rotation). The outputs of interest,
y(t), are the unsteady lift forces generated on each blade. The initial perturbation flow is given by x0 = 0.
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Figure 1. Geometry and CFD mesh for a single blade passage.

B. Geometric variability model

Geometric modes were computed using a PCA of data modified from 145 actual blades, measured at thirteen
sections along the radial direction. The mid-section geometries were then extracted. Thus the parameter
vector z contains the normally distributed random variables that describe perturbations in the geometry
of each blade according to the model (10). In Figure 2, we consider a geometric model that uses the two
dominant variability modes, ns = 2. The figure shows the lift coefficient, CL, and moment coefficient, CM ,
of a blade in response to a pulse input in plunge for a particular geometry that corresponds to z1 = 1.59,
z2 = 1.59. The response is computed using the exact linearized CFD model, i.e. the system (11), (12) and
the approximate linearized model (18), (19) with ns = 2 geometry modes. For reference, the response of the
nominal blade is also shown in the figure. It can be seen that despite the small perturbation in geometry, the
change in lift and moment coefficient responses is significant. The approximate linearized geometric model
captures the unsteady response accurately.
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Figure 2. Lift coefficient, CL, and moment coefficient, CM , in response to a pulse input in blade plunge
displacement for the nominal geometry and a perturbed geometry described by two geometric PCA modes
with z1 = 1.59, z2 = 1.59. Perturbed geometry results are computed with both the exact and approximate
linearized CFD model.
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Table 1 shows the error in lift and moment outputs due to the linearized geometry approximation for
several different blade geometries with a pulse input in plunge. The error e is defined as the 2-norm of the
difference between the approximate and the exact linearized output as a percentage of the change between
the exact and the nominal output,

e =

√∫ tf

0
‖ye − ya‖22dt√∫ tf

0
‖ye − yo‖22dt

× 100%, (38)

where ye, ya, and yo are respectively the exact, approximate, and nominal outputs. In the table, eCM

denotes the error in moment coefficient response, while eCL
denotes the error in lift coefficient response.

These computations were carried out over the time horizon shown in Figure 2, i.e. with tf = 107. In general,
we expect the quality of the approximate model to be compromised as the size of the geometric perturbation
increases. The errors shown in Table 1 for blade geometries in the tails of the distribution, i.e. those with
large geometry variation, are deemed to be acceptable for the probabilistic application of interest here. For
applications where greater accuracy for large geometry variations is important (for example, determining the
probability of failure would require the tail of the distribution to be resolved accurately), the results suggest
that the approximate linearized CFD system is not appropriate. In such cases, one might consider including
more terms in (16), the Taylor series expansion of the CFD matrices.

Table 1. Error in approximate linearized model predictions for a pulse input in blade displacement for several
different geometries.

Variability amplitudes eCM
(%) eCL

(%)

z1 = 1.59, z2 = 1.59 5.04 2.6
z1 = 1.59, z2 = −1.59 0.3 0.1
z1 = −1.59, z2 = −1.59 2.0 0.8
z1 = 3.0, z2 = 3.0 16.6 9.2
z1 = 3.0, z2 = −3.0 4.1 2.3
z1 = −3.0, z2 = −3.0 12.4 4.7

C. Model reduction

To create a reduced-order model for use in probabilistic analysis, the adaptive model reduction methodology
of Algorithm 1 is applied to this problem. Results are shown here for the case of two blades moving with
an interblade phase angle of 180◦. Each blade geometry is represented by two variability modes, giving
ns = 4 geometric parameters in this example. Applying the adaptive model reduction methodology with
ε = 10−6 and with the lift and moment coefficients as the outputs of interest yields a reduced-order model
of size nr = 438 (for two blades). Algorithm 1 required five adaptive cycles, over which a total of 26 Newton
iterations were performed. Recall that in solving the optimization problem to determine the next sample
point z∗, the Newton step is solved by CG, each iteration of which requires a pair of state and adjoint
system solves. However, the coefficient matrices of these systems remain constant over the CG iterations
within a Newton step; therefore, if a direct solver is feasible, the coefficient matrix needs to be factored just
once for each Newton iteration, followed by triangular solves at each CG iteration. Using this strategy, the
computational cost to compute our reduced model was thus of the order of 26 full-scale matrix factorizations
(whose computational cost dominates the other calculations). In terms of CPU time, this corresponds to 31.4
hours on a dual core personal computer with 3.2GHz Pentium processor. We note that for larger systems
(e.g. three-dimensional models), it would be necessary to use iterative solvers; in that case, the cost would
scale with the number of CG iterations.

Although the computational cost to perform the reduction is relatively high, we now have a reduced
model of size nr = 438 that accurately captures the unsteady response of the original two-blade system with
n = 103, 008 states over the range of geometries described by the four geometric parameters. As an example
of an application for which this reduced model is useful, we consider probabilistic analysis of the system.
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Specifically, we consider the impact of blade geometry variabilities on the work per cycle, which is defined as
the integral of the blade motion times the lift force over one unsteady cycle. A MCS was performed in which
5000 blade geometries were selected randomly from the given distributions for each blade. The same 5000
geometries were analyzed using the approximate linearized CFD model and the reduced model. Figure 3
shows the resulting probability density functions (PDFs) of work per cycle for the first blade, computed
using the approximate linearized CFD model and the reduced-order model. Figure 4 shows the PDFs of
work per cycle for the second blade. Table 2 shows that the CPU time required to compute the reduced
model MCS is a factor of 74 times smaller than that required for the CFD MCS. Note that the observed
speed-up factor in MCS time is less than the relative reduction in the number of states. This is because
the CFD system matrices are sparse (A ∈ IRn×n has 2,846,056 nonzero entries) while the reduced matrices
are not (Ar ∈ IRnr×nr has 191,844 nonzero entries). Nonetheless, the savings in computational time are
substantial, and more than justify the offline cost required to compute the reduced model. In practice, many
more than 5000 blade geometries are required to obtain a converged MCS; in this case, the computational
cost of using the CFD model becomes prohibitive. These computational results were obtained on a dual
core personal computer with 3.2GHz Pentium processor, using a direct sparse solver for the full model43 and
Matlab for the reduced model.

Table 2 also compares the statistics of the two distributions. It can be seen from Figure 3, Figure 4 and
Table 2 that the reduced-order model predicts the mean, variance and shape of the distribution of work
per cycle accurately. To further verify the quality of the reduced model, we apply the Kolmogorov-Smirnov
method,44 to test whether the reduced work per cycle results and the full work per cycle results are drawn
from a same distribution. The results show that we cannot reject the hypothesis that the distribution is the
same at a 5% significance level. The probability that the hypothesis is true is 0.9563 for the first blade and
0.9999 for the second blade.
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(b) Reduced WPC for Blade 1

Figure 3. Comparison of linearized CFD and reduced-order model predictions of work per cycle for Blade 1.
MCS results are shown for 5000 blade geometries. The same geometries were analyzed in each case. Dashed
line denotes the mean.

To further compare the reduced-order and CFD results, we pick four particular geometries corresponding
to the left tail, right tail, mid-left and mid-right locations on the PDF of the first blade as indicated by the
circles in Figure 3(a). In Table 3 the work per cycle is given for these four blade geometries as computed
by the exact CFD model, the approximate linearized CFD model, and the reduced-order model. The table
shows that again the approximate linearized CFD is in good agreement with the exact CFD, especially for
the mid-left and mid-right cases, which have smaller variability. In addition, the effectiveness of the adaptive
model reduction methodology of Algorithm 1 can be seen from the good agreement between the approximate
linearized CFD and the reduced results.
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Figure 4. Comparison of linearized CFD and reduced-order model predictions of work per cycle for Blade 2.
MCS results are shown for 5000 blade geometries. The same geometries were analyzed in each case. Dashed
line denotes the mean.

Table 2. Linearized CFD model and reduced-order model MCS results. Work per cycle (WPC) is predicted
for blade plunging motion at an interblade phase angle of 180◦ for 5000 randomly selected blade geometries.

CFD Reduced

Model size 103,008 438
Computation time 347.8 hours 4.7 hours
Blade 1 WPC mean -1.8572 -1.8574
Blade 1 WPC variance 2.7484e-4 2.778e-4
Blade 2 WPC mean -1.8581 -1.8581
Blade 2 WPC variance 2.7887e-4 2.8044e-4

Table 3. Exact CFD, approximate CFD, and reduced-order model work per cycle prediction for the four
geometries indicated in Figure 3(a).

Exact Approximate Reduced

Left tail -1.8973 -1.9056 -1.9061
Mid-left -1.8637 -1.8636 -1.8639
Mid-right -1.8459 -1.8455 -1.8457
Right tail -1.8014 -1.8086 -1.8085
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V. Conclusions

The key contributions of this paper are the derivation of a linearized CFD model that permits the
effects of geometry variations to be represented with an explicit affine function and the development of an
adaptive sampling method to derive a reduced-order basis that spans both forcing input and parameter space.
Together, these contributions lead to a computationally tractable formulation for analyzing the effects of
small variations in geometry on unsteady aerodynamic response. The methodology was demonstrated here
for a problem that is linear in the state variables and affine in the parameter variables; however, the adaptive
greedy sampling approach provides a general framework that is applicable to nonlinear problems. In the
general nonlinear case, however, one must address the challenge of carrying out online reduced-order model
computations in an efficient manner that does not depend on the large-scale system dimension.
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